Asymptotic almost-equivalence of abstract evolution systems ⋆
نویسندگان
چکیده
We study the asymptotic behavior of almost-orbits of abstract evolution systems in Banach spaces with or without a Lipschitz assumption. In particular, we establish convergence, convergence in average and almost-convergence of almost-orbits both for the weak and the strong topologies based on the behavior of the orbits. We also analyze the set of almost-stationary points.
منابع مشابه
ar X iv : 0 90 4 . 21 57 v 1 [ m at h . FA ] 1 4 A pr 2 00 9 Asymptotic almost - equivalence of abstract evolution systems
We study the asymptotic behavior of almost-orbits of abstract evolution systems in Banach spaces with or without a Lipschitz assumption. In particular, we establish convergence, convergence in average and almost-convergence of almost-orbits both for the weak and the strong topologies based on the behavior of the orbits. We also analyze the set of almost-stationary points.
متن کاملExponential Stability of Subspaces for Quantum Stochastic Master Equations
We study the stability of quantum pure states and, more generally, subspaces for stochastic dynamics that describe continuously–monitored systems. We show that the target subspace is almost surely invariant if and only if it is invariant for the average evolution, and that the same equivalence holds for the global asymptotic stability. Moreover, we prove that a strict linear Lyapunov function f...
متن کاملAsymptotic equivalence of differential equations and asymptotically almost periodic solutions
In this paper we establish asymptotic (biasymptotic) equivalence between spaces of solutions of a given linear homogeneous system and a perturbed system. The perturbations are of either linear or weakly linear characters. Existence of a homeomorphism between subspaces of almost periodic and asymptotically (biasymptotically) almost periodic solutions is also obtained.
متن کاملPermanence and Uniformly Asymptotic Stability of Almost Periodic Positive Solutions for a Dynamic Commensalism Model on Time Scales
In this paper, we study dynamic commensalism model with nonmonotic functional response, density dependent birth rates on time scales and derive sufficient conditions for the permanence. We also establish the existence and uniform asymptotic stability of unique almost periodic positive solution of the model by using Lyapunov functional method.
متن کاملThe Almost Equivalence by Asymptotic Probabilities for Regular Languages and Its Computational Complexities
We introduce p-equivalence by asymptotic probabilities, which is a weak almost-equivalence based on zero-one laws in finite model theory. In this paper, we consider the computational complexities of p-equivalence problems for regular languages and provide the following details. First, we give an robustness of p-equivalence and a logical characterization for p-equivalence. The characterization i...
متن کامل